Preview

Research Bulletin by Russian Maritime Register of Shipping

Advanced search

Prospects of innovative gas turbine technologies application in integrated power plants of Aframax tankers

Abstract

The article analyzes the potential of innovative gas turbine technologies application in integrated power plants of Aframax-class large-capacity ships to improve fleet energy efficiency and environmental friendliness. Conceptual designs of megawatt-class IPPs have been developed, combining advances in gas turbine engineering, steam turbine and electrochemical technologies, renewable energy sources, and intelligent control systems. Rational parameters of gas turbine engines and waste heat recovery circuits have been determined to achieve efficiency over 60 % with a significant reduction in greenhouse gas emissions.

About the Authors

A. A. Ivanchenko
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

DSc, Professor

198035 St. Petersburg, Dvinskaya ul. 5/7



L. S. Ventsulis
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

DSc, Professor

198035 St. Petersburg, Dvinskaya ul. 5/7



G. A. Konev
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

MSc, post-graduate student

198035 St. Petersburg, Dvinskaya ul. 5/7



References

1. Третье исследование ИМО о выбросах парниковых газов. — 2014.

2. Первоначальная стратегия ИМО по сокращению выбросов парниковых газов с судов. MEPC 72/17/Add.1, Приложение 11. — 2018.

3. Пересмотренная стратегия ИМО по сокращению выбросов парниковых газов с судов. MEPC 80/15/Add.1. — 2023.

4. DNV GL. Energy Transition Outlook 2020: Maritime Forecast to 2050. — 2020.

5. Welaya Y.M.A. A comparison between fuel cells and other alternatives for marine electric power generation / Y.M.A. Welaya, M.M. El Gohary, N.R. Ammar // International Journal of Naval Architecture and Ocean Engineering. — 2011. — Т. 3. — № 2. — Р. 141 — 149.

6. Baldi F. et al. Improving ship energy efficiency through a systems perspective: PhD thesis / F. Baldi; Chalmers Tekniska Hogskola. — Göteborg, 2013. — 135 p.

7. ABS. Setting the Course to Low Carbon Shipping. Outlook 2030. — 2019.

8. LR. Techno-Economic Assessment of Zero-Carbon Fuels. — 2020.

9. GE Power Conversion. Marine Electric Propulsion Systems. — 2019.

10. Le-ol A.K. Integrated stochastic approach for instantaneous energy performance analysis of thermal energy systems / A.K. Le-ol, S. Adumene, D.S. Aziaka, M. Yazdi, J. Mohammadpour // Energies. — 2025. — Vol. 18(1). — P. 160.

11. Kyriakidis F. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines / F. Kyriakidis, K. Sørensen, S. Singh, T. Condra // Energy Conversion and Management. — 2017. — Vol. 151. — P. 286 — 295.

12. Altosole M. Simulation and performance comparison between diesel and natural gas engines for marine applications / M. Altosole, G. Benvenuto, U. Campora, M. Laviola et al. // Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment. — 2017. — Vol. 231(2). — P. 690 — 704.

13. Saha A.K. Blade tip leakage flow and heat transfer with pressure‐side winglet / A.K. Saha, S. Acharya, R. Bunker, C. Prakash // International Journal of Rotating Machinery. — 2006(3). — 17079.

14. Horlock J.H. Limitations on gas turbine performance imposed by large turbine cooling flows / J.H. Horlock, D.T. Watson, T.V. Jones // Journal of Engineering for Gas Turbines and Power. — 2001. — Vol. 123(3). — P. 487 — 494.

15. Lefebvre A. Gas turbine combustion: Alternative fuels and emissions. 3rd ed. / A. Lefebvre, D.R. Ballal. — CRC Press, 2010. — 537 p.

16. Liu Y. Review of modern low emissions combustion technologies for aero gas turbine engines / Y. Liu, X. Sun, V. Sethi, D. Nalianda et. al. // Progress in Aerospace Sciences. — 2017. — Vol. 94. — P. 12 — 45.

17. Ulfsnes R.E. Modelling and simulation of transient performance of the semi-closed O2/CO2 gas turbine cycle for CO2-capture / R.E. Ulfsnes, O. Bolland, K. Jordal // Turbo Expo: Power for Land, Sea, and Air. — 2003. — Т. 3686. — P. 65 — 74.

18. Altosole M. High efficiency waste heat recovery solutions for naval applications / M. Altosole, U. Campora, M. Laviola, R. Zaccone // Proceedings of 19th International Conference on Ship & Maritime Research. NAV 2018. — 2018.

19. Haglind F. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part I: Background and design / F. Haglind // Energy Conversion and Management. — 2008. — Vol. 49(12). — P. 3458 — 3467.

20. Haglind F. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part II: Previous work and implications / F. Haglind // Energy Conversion and Management. — 2008. — Vol. 49(12). — P. 3468 — 3475.

21. Mondejar M.E. A review of the use of organic Rankine cycle power systems for maritime applications / M.E. Mondejar, J.G. Andreasen, L. Pierobon, U. Larsen et al. // Renewable and Sustainable Energy Reviews. — 2018. — Vol. 91. — P. 126 — 151.

22. Larsen U. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection / U. Larsen, L. Pierobon, F. Haglind, C. Gabrielii // Energy. — 2013. — Vol. 55. — P. 803 — 812.

23. Andreasen J.G. A comparison of organic and steam Rankine cycle power systems for waste heat recovery on large ships / J.G. Andreasen, A. Meroni, F. Haglind // Energies. — 2017. — Vol. 10(4). — 547.

24. Kalikatzarakis M. Multi-criteria selection and thermo-economic optimization of Organic Rankine Cycle system for a marine application / M. Kalikatzarakis, C.A. Frangopoulos // International Journal of Thermodynamics. — 2015. — Vol. 18(2). — P. 133 — 141.

25. Song J. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines / J. Song, Y. Li, C.W. Gu, L. Zhang // Energy. — 2015. — Vol. 82. — P. 976 — 985.

26. Shu G. Operational profile based thermal-economic analysis on an Organic Rankine cycle using for harvesting marine engine’s exhaust waste heat / G. Shu, P. Liu, H. Tian, X. Wang et al. // Energy Conversion and Management. — 2017. — Vol. 146. — P. 107 — 123.

27. Armellini A. Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations / A. Armellini, S. Daniotti, P. Pinamonti, M. Reini // Applied Energy. — 2018. — Vol. 211. — P. 306 — 317.

28. Senary K. Development of a waste heat recovery system onboard LNG carrier to meet IMO regulations / K. Senary, A. Tawfik, E. Hegazy, A. Ali // Alexandria Engineering Journal. — 2016. — Vol. 55(3). — P. 1951 — 1960.

29. Shu G. A review of waste heat recovery on two-stroke IC engine aboard ships / G. Shu, Y. Liang, H. Wei, H. Tian et al. // Renewable and Sustainable Energy Reviews. — 2013. — Vol. 19. — P. 385 — 401.

30. Baldi F. Optimal load allocation of complex ship power plants / F. Baldi, F. Ahlgren, F. Melino, C. Gabrielii et al. // Energy Conversion and Management. — 2016. — Vol. 124. — P. 344 — 356.

31. Geertsma R.D. Design and control of hybrid power and propulsion systems for smart ships: A review of developments / R.D. Geertsma, R.R. Negenborn, K. Visser, J.J. Hopman // Applied Energy. — 2017. — Vol. 194. — P. 30 — 54.

32. Shih N.C. Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles / N.C. Shih, B.J. Weng, J.Y. Lee, Y.C. Hsiao // International Journal of Hydrogen Energy. — 2014. — Vol. 39(25). — P. 13894 — 13901.

33. Yan Y. Multi-objective design optimization of combined cooling, heating and power system for cruise ship application / Y. Yan, H. Zhang, Y. Long, Y. Wang et al. // Journal of Cleaner Production. — 2019. — Vol. 233. — P. 264 — 279.

34. Baldi F. Energy and exergy analysis of ship energy systems — The case study of a chemical tanker / F. Baldi, H. Johnson, C. Gabrielii, K. Andersson // International Journal of Thermodynamics. — 2015. — Vol. 18(2). — P. 82 — 93.

35. Geertsma R. Adaptive pitch control for ships with diesel mechanical and hybrid propulsion / R. Geertsma, M. van der Knaap, K. Visser, R. Negenborn // Applied Energy. — 2018. — Vol. 228. — P. 2490 — 2509.

36. Nuchturee C. Energy efficiency of integrated electric propulsion for ships — A review / C. Nuchturee, T. Li, H. Xia // Renewable and Sustainable Energy Reviews. — 2020. — Vol. 134. — 110145.

37. Ancona M.A. Efficiency improvement on a cruise ship: Load allocation optimization / M.A. Ancona, F. Baldi, M. Bianchi, L. Branchini et al. // Energy Conversion and Management. — 2018. — Vol. 164. — P. 42 — 58.

38. Sorrentino V. Experimental and numerical investigation of air lubrication on a planing hull with Double Interceptor System / V. Sorrentino, R. Pigazzini, F. De Luca, S. Mancini, C. Pensa // Ocean Engineering. — 2025. — Vol. 319. — 120135.

39. Dimopoulos G.G. A general-purpose process modelling framework for marine energy systems / G.G. Dimopoulos, C.A. Georgopoulou, I.C. Stefanatos, N.M.P. Kakalis // Energy Conversion and Management. — 2014. — Vol. 86. — P. 325 — 339.

40. Ahlgren F. Waste heat recovery in a cruise vessel in the Baltic Sea by using an organic Rankine cycle: A case study / F. Ahlgren, M.E. Mondejar, M. Genrup, M. Thern // Journal of Engineering for Gas Turbines and Power. — 2015. — Vol. 138. — 011702.

41. Fisher R. Innovative waste heat valorisation technologies for zero-carbon ships — A review / R. Fisher, L. Ciappi, P. Niknam, K. Braimakis et al. // Applied Thermal Engineering. — 2024. — Vol. 253. — 123740.

42. Singh D.V. A review of waste heat recovery technologies for maritime applications / D.V. Singh, E. Pedersen // Energy Conversion and Management. — 2016. — Vol. 111. — P. 315 — 328.

43. Rohkamp M. Gaseous and particulate matter (PM) emissions from a turboshaft-engine using different blends of sustainable aviation fuel (SAF) / M. Rohkamp, A. Rabl, J. Bendl, C. Neukirchenet al. // Aerosol Science and Technology. — 2024. — Vol. 59(1). — P. 111 — 126.

44. van Biert L. A review of fuel cell systems for maritime applications / L. van Biert, T. Woudstra, M. Godjevac, K. Visser et al. // Journal of Power Sources. — 2016. — Vol. 327. — P. 345 — 364.

45. Sapra H. Experimental and simulation-based investigations of marine diesel engine performance against static back pressure / H. Sapra, M. Godjevac, K. Visser, D. Stapersma et al. // Applied Energy. — 2017. — Vol. 204. — P. 78 — 92.

46. Wang K. Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review / K. Wang, Z. Li, R. Zhang, R. Ma et al. // Renewable and Sustainable Energy Reviews. — 2025. — Vol. 207. — 114896.

47. Dedes E.K. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping / E.K. Dedes, D.A. Hudson, S.R. Turnock // Energy Policy. — 2012. — Vol. 40. — P. 204 — 218.

48. Jeong B. Evaluation of the lifecycle environmental benefits of full battery powered ships: Comparative analysis of marine diesel and electricity / B. Jeong, H. Jeon, S. Kim, J. Kim et al. // Journal of Marine Science and Engineering. — 2020. — Vol. 8(8). — 580.

49. Artificial intelligence and machine learning applications for sustainable development / ed. by A.J. Singh, N. Gupta, S. Kumar, S. Sharma et al. — CRC Press, 2025. — 276 p.

50. Roux M. A review of life cycle assessment studies of maritime fuels: Critical insights, gaps, and recommendations / M. Roux, C. Lodato, A. Laurent, T.F. Astrup // Sustainable Production and Consumption. — 2024. — Vol. 50. — P. 69 — 86.

51. Zhu J. High temperature ceramic matrix composites for aerospace applications / J. Zhu, L. Cheng, X. Xu // Composites Part B: Engineering. — 2021. — Vol. 216. — 108829.

52. Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview / R. Naslain // Composites Science and Technology. — 2004. — Vol. 64(2). — P. 155 — 170.

53. Gibson I. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing / I. Gibson, D.W. Rosen, B. Stucker. — New York: Springer, 2015. — 498 p.

54. Kumar M. Prospects of ceramic matrix composites in engineering and commercial applications / M. Kumar, C. Devi, M. Hemath, S. Mandol et al. // Applications of Composite Materials in Engineering / ed. by M. Puttegowda, T.G.Y. Gowda, J.S. Binoj, S.M. Rangappa et al. — Elsevier Science Ltd, 2025. — P. 419 — 436.

55. Pollock T.M. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties / T.M. Pollock, S. Tin // Journal of Propulsion and Power. — 2006. — Vol. 22(2). — P. 361 — 374.

56. Padture N.P. Advanced structural ceramics in aerospace propulsion / N.P. Padture // Nature Materials. — 2016. — Vol. 15. — P. 804 — 809.

57. Reed R.C. The superalloys: Fundamentals and applications / R.C. Reed. — Cambridge: Cambridge University Press, 2006. — 372 p.

58. Yeh J.W. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes / J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan et al. // Advanced Engineering Materials. — 2004. — Vol. 6(5). — P. 299 — 303.

59. Padture N.P. Thermal Barrier Coatings for Gas-Turbine Engine Applications / N.P. Padture, M. Gell, E.H. Jordan // Science. — 2002. — Vol. 296(5566). — P. 280 — 284.

60. Kablov E.N. Cast intermetallic alloys for gas turbine engines / E.N. Kablov, O.G. Ospennikova, N.V. Petrushin // Inorganic Materials: Applied Research. — 2017. — Vol. 8. — P. 844 — 856.

61. Сорокин О.Ю. Высокотемпературные композиционные материалы с многослойной структурой (обзор) / О.Ю. Сорокин, Б.Ю. Кузнецов, Ю.В. Лунегова, В.С. Ерасов // Труды ВИАМ. — 2020. — № 4 — 5 (88). — С. 42 — 53. = Sorokin O.Yu. Hightemperature composite materials with a multi-layered structure (review) / O.Yu. Sorokin, B.Yu. Kuznetsov, Yu.V. Lunegova, V.S. Erasov // Trudy VIAM [Proceedings of VIAM]. — 2020. — No. 4 —5 (88). — P. 42 — 53. (In Russ.)

62. Han J.-C. Gas turbine heat transfer and cooling technology / J.-C. Han, S. Dutta, S. Ekkad. — Boca Raton: CRC Press, 2012. — 496 p.

63. Bunker R.S. Gas turbine heat transfer: Ten remaining hot gas path challenges / R.S. Bunker. — Southampton: WIT Press, 2008. — 217 p.

64. Gu D. Laser additive manufacturing of high-performance materials / D. Gu. — Berlin: Springer, 2015. — 311 p.

65. Adapa V.S.K. Insights into the gamma prime precipitation behavior during heat treatment of Additively Manufactured Nickel-based Superalloy / V.S.K. Adapa, S.R. Kalidindi, Ch.J. Saldana // Journal of Alloys and Compounds. — 2025. — 178507.

66. Lefebvre A. Gas turbine combustion: Alternative fuels and emissions / A. Lefebvre, D.R. Ballal. — Boca Raton: CRC Press, 2010. — 537 p.

67. Huang Y., Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion // Progress in Energy and Combustion Science. — 2009. — Vol. 35(4). — P. 293 — 364.

68. Lieuwen T. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling / T. Lieuwen, V. Yang. — Reston: AIAA, 2005. — 657 p.

69. Law C.K. Combustion in microgravity: Opportunities, challenges and progress / C.K. Law. — AIAA Paper No. 90-0120. — 28th Aerospace Sciences Meeting, Reno, Nevada, 1990.

70. Ghenai Ch. Combustion of syngas fuel in gas turbine can combustor // Advances in Mechanical Engineering. — 2010. — Vol. 2010. — 342357.

71. Cheekatamarla P.K. Heterogeneous oxidation of hydrogen-natural gas blends in a safe, clean, and efficient burner design / P.K. Cheekatamarla // International Journal of Hydrogen Energy. — 2024. — Vol. 61(1). — P. 210 — 215.

72. Khandelwal B. Development of gas turbine combustor preliminary design methodologies and preliminary assessments of advanced low emission combustor concepts: PhD thesis / B. Khandelwal; Cranfield University. — 2012. — 245 p.

73. Dhamrat R.S. Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor / R.S. Dhamrat, J.L. Ellzey // Combustion and Flame. — 2006. — Vol. 144(4). — P. 698 — 709.


Review

For citations:


Ivanchenko A.A., Ventsulis L.S., Konev G.A. Prospects of innovative gas turbine technologies application in integrated power plants of Aframax tankers. Research Bulletin by Russian Maritime Register of Shipping. 2024;(77):126-149. (In Russ.)

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-7097 (Print)