Preview

Научно-технический сборник Российского морского регистра судоходства

Расширенный поиск

Перспективы применения инновационных газотурбинных технологий в составе КСЭУ судов класса «Афрамакс»

Аннотация

В статье проанализированы возможности применения инновационных газотурбинных технологий в составе комбинированных энергетических установок крупнотоннажных судов класса «Афрамакс» с целью повышения энергоэффективности и экологических показателей флота. Разработаны концептуальные проекты КСЭУ мегаваттного класса, объединяющие достижения газотурбостроения, паротурбинных и электрохимических технологий, технологий использования возобновляемых источников энергии и интеллектуальных систем управления. Определены рациональные параметры ГТД и утилизационных контуров для достижения КПД свыше 60 % при существенном снижении эмиссии парниковых газов.

Об авторах

А. А. Иванченко
ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»
Россия

д-р техн. наук, профессор

198035 Санкт-Петербург, Двинская ул., 5/7



Л. С. Венцюлис
ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»
Россия

д-р техн. наук, профессор

198035 Санкт-Петербург, Двинская ул., 5/7



Г. А. Конев
ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»
Россия

магистр, аспирант

198035 Санкт-Петербург, Двинская ул., 5/7



Список литературы

1. Третье исследование ИМО о выбросах парниковых газов. — 2014.

2. Первоначальная стратегия ИМО по сокращению выбросов парниковых газов с судов. MEPC 72/17/Add.1, Приложение 11. — 2018.

3. Пересмотренная стратегия ИМО по сокращению выбросов парниковых газов с судов. MEPC 80/15/Add.1. — 2023.

4. DNV GL. Energy Transition Outlook 2020: Maritime Forecast to 2050. — 2020.

5. Welaya Y.M.A. A comparison between fuel cells and other alternatives for marine electric power generation / Y.M.A. Welaya, M.M. El Gohary, N.R. Ammar // International Journal of Naval Architecture and Ocean Engineering. — 2011. — Т. 3. — № 2. — Р. 141 — 149.

6. Baldi F. et al. Improving ship energy efficiency through a systems perspective: PhD thesis / F. Baldi; Chalmers Tekniska Hogskola. — Göteborg, 2013. — 135 p.

7. ABS. Setting the Course to Low Carbon Shipping. Outlook 2030. — 2019.

8. LR. Techno-Economic Assessment of Zero-Carbon Fuels. — 2020.

9. GE Power Conversion. Marine Electric Propulsion Systems. — 2019.

10. Le-ol A.K. Integrated stochastic approach for instantaneous energy performance analysis of thermal energy systems / A.K. Le-ol, S. Adumene, D.S. Aziaka, M. Yazdi, J. Mohammadpour // Energies. — 2025. — Vol. 18(1). — P. 160.

11. Kyriakidis F. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines / F. Kyriakidis, K. Sørensen, S. Singh, T. Condra // Energy Conversion and Management. — 2017. — Vol. 151. — P. 286 — 295.

12. Altosole M. Simulation and performance comparison between diesel and natural gas engines for marine applications / M. Altosole, G. Benvenuto, U. Campora, M. Laviola et al. // Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment. — 2017. — Vol. 231(2). — P. 690 — 704.

13. Saha A.K. Blade tip leakage flow and heat transfer with pressure‐side winglet / A.K. Saha, S. Acharya, R. Bunker, C. Prakash // International Journal of Rotating Machinery. — 2006(3). — 17079.

14. Horlock J.H. Limitations on gas turbine performance imposed by large turbine cooling flows / J.H. Horlock, D.T. Watson, T.V. Jones // Journal of Engineering for Gas Turbines and Power. — 2001. — Vol. 123(3). — P. 487 — 494.

15. Lefebvre A. Gas turbine combustion: Alternative fuels and emissions. 3rd ed. / A. Lefebvre, D.R. Ballal. — CRC Press, 2010. — 537 p.

16. Liu Y. Review of modern low emissions combustion technologies for aero gas turbine engines / Y. Liu, X. Sun, V. Sethi, D. Nalianda et. al. // Progress in Aerospace Sciences. — 2017. — Vol. 94. — P. 12 — 45.

17. Ulfsnes R.E. Modelling and simulation of transient performance of the semi-closed O2/CO2 gas turbine cycle for CO2-capture / R.E. Ulfsnes, O. Bolland, K. Jordal // Turbo Expo: Power for Land, Sea, and Air. — 2003. — Т. 3686. — P. 65 — 74.

18. Altosole M. High efficiency waste heat recovery solutions for naval applications / M. Altosole, U. Campora, M. Laviola, R. Zaccone // Proceedings of 19th International Conference on Ship & Maritime Research. NAV 2018. — 2018.

19. Haglind F. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part I: Background and design / F. Haglind // Energy Conversion and Management. — 2008. — Vol. 49(12). — P. 3458 — 3467.

20. Haglind F. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part II: Previous work and implications / F. Haglind // Energy Conversion and Management. — 2008. — Vol. 49(12). — P. 3468 — 3475.

21. Mondejar M.E. A review of the use of organic Rankine cycle power systems for maritime applications / M.E. Mondejar, J.G. Andreasen, L. Pierobon, U. Larsen et al. // Renewable and Sustainable Energy Reviews. — 2018. — Vol. 91. — P. 126 — 151.

22. Larsen U. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection / U. Larsen, L. Pierobon, F. Haglind, C. Gabrielii // Energy. — 2013. — Vol. 55. — P. 803 — 812.

23. Andreasen J.G. A comparison of organic and steam Rankine cycle power systems for waste heat recovery on large ships / J.G. Andreasen, A. Meroni, F. Haglind // Energies. — 2017. — Vol. 10(4). — 547.

24. Kalikatzarakis M. Multi-criteria selection and thermo-economic optimization of Organic Rankine Cycle system for a marine application / M. Kalikatzarakis, C.A. Frangopoulos // International Journal of Thermodynamics. — 2015. — Vol. 18(2). — P. 133 — 141.

25. Song J. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines / J. Song, Y. Li, C.W. Gu, L. Zhang // Energy. — 2015. — Vol. 82. — P. 976 — 985.

26. Shu G. Operational profile based thermal-economic analysis on an Organic Rankine cycle using for harvesting marine engine’s exhaust waste heat / G. Shu, P. Liu, H. Tian, X. Wang et al. // Energy Conversion and Management. — 2017. — Vol. 146. — P. 107 — 123.

27. Armellini A. Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations / A. Armellini, S. Daniotti, P. Pinamonti, M. Reini // Applied Energy. — 2018. — Vol. 211. — P. 306 — 317.

28. Senary K. Development of a waste heat recovery system onboard LNG carrier to meet IMO regulations / K. Senary, A. Tawfik, E. Hegazy, A. Ali // Alexandria Engineering Journal. — 2016. — Vol. 55(3). — P. 1951 — 1960.

29. Shu G. A review of waste heat recovery on two-stroke IC engine aboard ships / G. Shu, Y. Liang, H. Wei, H. Tian et al. // Renewable and Sustainable Energy Reviews. — 2013. — Vol. 19. — P. 385 — 401.

30. Baldi F. Optimal load allocation of complex ship power plants / F. Baldi, F. Ahlgren, F. Melino, C. Gabrielii et al. // Energy Conversion and Management. — 2016. — Vol. 124. — P. 344 — 356.

31. Geertsma R.D. Design and control of hybrid power and propulsion systems for smart ships: A review of developments / R.D. Geertsma, R.R. Negenborn, K. Visser, J.J. Hopman // Applied Energy. — 2017. — Vol. 194. — P. 30 — 54.

32. Shih N.C. Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles / N.C. Shih, B.J. Weng, J.Y. Lee, Y.C. Hsiao // International Journal of Hydrogen Energy. — 2014. — Vol. 39(25). — P. 13894 — 13901.

33. Yan Y. Multi-objective design optimization of combined cooling, heating and power system for cruise ship application / Y. Yan, H. Zhang, Y. Long, Y. Wang et al. // Journal of Cleaner Production. — 2019. — Vol. 233. — P. 264 — 279.

34. Baldi F. Energy and exergy analysis of ship energy systems — The case study of a chemical tanker / F. Baldi, H. Johnson, C. Gabrielii, K. Andersson // International Journal of Thermodynamics. — 2015. — Vol. 18(2). — P. 82 — 93.

35. Geertsma R. Adaptive pitch control for ships with diesel mechanical and hybrid propulsion / R. Geertsma, M. van der Knaap, K. Visser, R. Negenborn // Applied Energy. — 2018. — Vol. 228. — P. 2490 — 2509.

36. Nuchturee C. Energy efficiency of integrated electric propulsion for ships — A review / C. Nuchturee, T. Li, H. Xia // Renewable and Sustainable Energy Reviews. — 2020. — Vol. 134. — 110145.

37. Ancona M.A. Efficiency improvement on a cruise ship: Load allocation optimization / M.A. Ancona, F. Baldi, M. Bianchi, L. Branchini et al. // Energy Conversion and Management. — 2018. — Vol. 164. — P. 42 — 58.

38. Sorrentino V. Experimental and numerical investigation of air lubrication on a planing hull with Double Interceptor System / V. Sorrentino, R. Pigazzini, F. De Luca, S. Mancini, C. Pensa // Ocean Engineering. — 2025. — Vol. 319. — 120135.

39. Dimopoulos G.G. A general-purpose process modelling framework for marine energy systems / G.G. Dimopoulos, C.A. Georgopoulou, I.C. Stefanatos, N.M.P. Kakalis // Energy Conversion and Management. — 2014. — Vol. 86. — P. 325 — 339.

40. Ahlgren F. Waste heat recovery in a cruise vessel in the Baltic Sea by using an organic Rankine cycle: A case study / F. Ahlgren, M.E. Mondejar, M. Genrup, M. Thern // Journal of Engineering for Gas Turbines and Power. — 2015. — Vol. 138. — 011702.

41. Fisher R. Innovative waste heat valorisation technologies for zero-carbon ships — A review / R. Fisher, L. Ciappi, P. Niknam, K. Braimakis et al. // Applied Thermal Engineering. — 2024. — Vol. 253. — 123740.

42. Singh D.V. A review of waste heat recovery technologies for maritime applications / D.V. Singh, E. Pedersen // Energy Conversion and Management. — 2016. — Vol. 111. — P. 315 — 328.

43. Rohkamp M. Gaseous and particulate matter (PM) emissions from a turboshaft-engine using different blends of sustainable aviation fuel (SAF) / M. Rohkamp, A. Rabl, J. Bendl, C. Neukirchenet al. // Aerosol Science and Technology. — 2024. — Vol. 59(1). — P. 111 — 126.

44. van Biert L. A review of fuel cell systems for maritime applications / L. van Biert, T. Woudstra, M. Godjevac, K. Visser et al. // Journal of Power Sources. — 2016. — Vol. 327. — P. 345 — 364.

45. Sapra H. Experimental and simulation-based investigations of marine diesel engine performance against static back pressure / H. Sapra, M. Godjevac, K. Visser, D. Stapersma et al. // Applied Energy. — 2017. — Vol. 204. — P. 78 — 92.

46. Wang K. Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review / K. Wang, Z. Li, R. Zhang, R. Ma et al. // Renewable and Sustainable Energy Reviews. — 2025. — Vol. 207. — 114896.

47. Dedes E.K. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping / E.K. Dedes, D.A. Hudson, S.R. Turnock // Energy Policy. — 2012. — Vol. 40. — P. 204 — 218.

48. Jeong B. Evaluation of the lifecycle environmental benefits of full battery powered ships: Comparative analysis of marine diesel and electricity / B. Jeong, H. Jeon, S. Kim, J. Kim et al. // Journal of Marine Science and Engineering. — 2020. — Vol. 8(8). — 580.

49. Artificial intelligence and machine learning applications for sustainable development / ed. by A.J. Singh, N. Gupta, S. Kumar, S. Sharma et al. — CRC Press, 2025. — 276 p.

50. Roux M. A review of life cycle assessment studies of maritime fuels: Critical insights, gaps, and recommendations / M. Roux, C. Lodato, A. Laurent, T.F. Astrup // Sustainable Production and Consumption. — 2024. — Vol. 50. — P. 69 — 86.

51. Zhu J. High temperature ceramic matrix composites for aerospace applications / J. Zhu, L. Cheng, X. Xu // Composites Part B: Engineering. — 2021. — Vol. 216. — 108829.

52. Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview / R. Naslain // Composites Science and Technology. — 2004. — Vol. 64(2). — P. 155 — 170.

53. Gibson I. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing / I. Gibson, D.W. Rosen, B. Stucker. — New York: Springer, 2015. — 498 p.

54. Kumar M. Prospects of ceramic matrix composites in engineering and commercial applications / M. Kumar, C. Devi, M. Hemath, S. Mandol et al. // Applications of Composite Materials in Engineering / ed. by M. Puttegowda, T.G.Y. Gowda, J.S. Binoj, S.M. Rangappa et al. — Elsevier Science Ltd, 2025. — P. 419 — 436.

55. Pollock T.M. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties / T.M. Pollock, S. Tin // Journal of Propulsion and Power. — 2006. — Vol. 22(2). — P. 361 — 374.

56. Padture N.P. Advanced structural ceramics in aerospace propulsion / N.P. Padture // Nature Materials. — 2016. — Vol. 15. — P. 804 — 809.

57. Reed R.C. The superalloys: Fundamentals and applications / R.C. Reed. — Cambridge: Cambridge University Press, 2006. — 372 p.

58. Yeh J.W. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes / J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan et al. // Advanced Engineering Materials. — 2004. — Vol. 6(5). — P. 299 — 303.

59. Padture N.P. Thermal Barrier Coatings for Gas-Turbine Engine Applications / N.P. Padture, M. Gell, E.H. Jordan // Science. — 2002. — Vol. 296(5566). — P. 280 — 284.

60. Kablov E.N. Cast intermetallic alloys for gas turbine engines / E.N. Kablov, O.G. Ospennikova, N.V. Petrushin // Inorganic Materials: Applied Research. — 2017. — Vol. 8. — P. 844 — 856.

61. Сорокин О.Ю. Высокотемпературные композиционные материалы с многослойной структурой (обзор) / О.Ю. Сорокин, Б.Ю. Кузнецов, Ю.В. Лунегова, В.С. Ерасов // Труды ВИАМ. — 2020. — № 4 — 5 (88). — С. 42 — 53. = Sorokin O.Yu. Hightemperature composite materials with a multi-layered structure (review) / O.Yu. Sorokin, B.Yu. Kuznetsov, Yu.V. Lunegova, V.S. Erasov // Trudy VIAM [Proceedings of VIAM]. — 2020. — No. 4 —5 (88). — P. 42 — 53. (In Russ.)

62. Han J.-C. Gas turbine heat transfer and cooling technology / J.-C. Han, S. Dutta, S. Ekkad. — Boca Raton: CRC Press, 2012. — 496 p.

63. Bunker R.S. Gas turbine heat transfer: Ten remaining hot gas path challenges / R.S. Bunker. — Southampton: WIT Press, 2008. — 217 p.

64. Gu D. Laser additive manufacturing of high-performance materials / D. Gu. — Berlin: Springer, 2015. — 311 p.

65. Adapa V.S.K. Insights into the gamma prime precipitation behavior during heat treatment of Additively Manufactured Nickel-based Superalloy / V.S.K. Adapa, S.R. Kalidindi, Ch.J. Saldana // Journal of Alloys and Compounds. — 2025. — 178507.

66. Lefebvre A. Gas turbine combustion: Alternative fuels and emissions / A. Lefebvre, D.R. Ballal. — Boca Raton: CRC Press, 2010. — 537 p.

67. Huang Y., Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion // Progress in Energy and Combustion Science. — 2009. — Vol. 35(4). — P. 293 — 364.

68. Lieuwen T. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling / T. Lieuwen, V. Yang. — Reston: AIAA, 2005. — 657 p.

69. Law C.K. Combustion in microgravity: Opportunities, challenges and progress / C.K. Law. — AIAA Paper No. 90-0120. — 28th Aerospace Sciences Meeting, Reno, Nevada, 1990.

70. Ghenai Ch. Combustion of syngas fuel in gas turbine can combustor // Advances in Mechanical Engineering. — 2010. — Vol. 2010. — 342357.

71. Cheekatamarla P.K. Heterogeneous oxidation of hydrogen-natural gas blends in a safe, clean, and efficient burner design / P.K. Cheekatamarla // International Journal of Hydrogen Energy. — 2024. — Vol. 61(1). — P. 210 — 215.

72. Khandelwal B. Development of gas turbine combustor preliminary design methodologies and preliminary assessments of advanced low emission combustor concepts: PhD thesis / B. Khandelwal; Cranfield University. — 2012. — 245 p.

73. Dhamrat R.S. Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor / R.S. Dhamrat, J.L. Ellzey // Combustion and Flame. — 2006. — Vol. 144(4). — P. 698 — 709.


Рецензия

Для цитирования:


Иванченко А.А., Венцюлис Л.С., Конев Г.А. Перспективы применения инновационных газотурбинных технологий в составе КСЭУ судов класса «Афрамакс». Научно-технический сборник Российского морского регистра судоходства. 2024;(77):126-149.

For citation:


Ivanchenko A.A., Ventsulis L.S., Konev G.A. Prospects of innovative gas turbine technologies application in integrated power plants of Aframax tankers. Research Bulletin by Russian Maritime Register of Shipping. 2024;(77):126-149. (In Russ.)

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-7097 (Print)