Preview

Research Bulletin by Russian Maritime Register of Shipping

Advanced search

Experience in creating different types of power plants for Aframax class offshore vessels

Abstract

The article analyses the experience of application of different types of power plants on Aframax class ships. Features, advantages and disadvantages of steam turbine, gas turbine, electric, conventional diesel and combined units are considered. Special attention is paid to the introduction of multi-fuel solutions, integration of heat utilisation and electric propulsion technologies. The comparison of promising concepts of power plants based on a set of criteria of energy efficiency, environmental friendliness and flexibility is carried out. Optimal configurations of EPS for the main types of Aframax class ships are proposed. Priority areas in the context of fleet decarbonisation trends are framed.

About the Authors

A. A. Ivanchenko
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

DSc, Professor

198035 Russia, St. Petersburg, Dvinskaya ul. 5/7 



G. A. Konev
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

post-graduate student 

198035 Russia, St. Petersburg, Dvinskaya ul. 5/7 



References

1. González C. Evaluating the economic implications of the EU emissions trading system on the energy supply chain through maritime transport / C. González // Journal of Maritime Research. — 2023. — Vol. 20, № 2. — P. 141 — 147.

2. Abed N.Y. Power electronics equipments for all-electric ship power systems / N.Y. Abed // Power Electronics Handbook, 2024. — P. 965 — 975.

3. Nivolianiti E. Energy management of shipboard microgrids integrating energy storage systems: A review / E. Nivolianiti, Y.L. Karnavas, J.F. Charpentier // Renewable and Sustainable Energy Reviews. — 2024. — Vol. 189. — P. 114012.

4. Curran S. The future of ship engines: Renewable fuels and enabling technologies for de-carbonization / S. Curran, A. Onorati, R. Payri, A.K. Agarwal et al. // International Journal of Engine Research, 2024. — Vol. 25, Issue 1. — P. 85 — 110.

5. Zhukov V.A., Gavrilov V.V., Gombalevskiy A.N. Sovershenstvovanie sistemy toplivopodachi dvukhtoplivnykh sudovykh dizeley [Improvement of the fuel supply system of dual-fuel marine diesel engines]. Transportnoe delo Rossii [Transport Industry of Russia]. 2023 (5): 248-252. (In Russ.)

6. Zhu S. Numerical studies on the flow characteristic of the marine two-stroke engine integrated with the high-pressure exhaust gas recirculation system / S. Zhu, Y. Tang, D. Wang, Sh. Bai et al. // Case Studies in Thermal Engineering. — 2024. — Vol. 53. — P. 103958.

7. Lee K.K., Hochegger W., Schönborn A. Energy-specific greenhouse gas emissions measurements from 2-stroke marine diesel engine using liquefied natural gas / K.K. Lee, W. Hochegger, A. Schönborn // Proceedings of the Institution of Mechanical Engineers. Part M: Journal of Engineering for the Maritime. — 2024. — Vol. 238, № 1. — P. 231 — 247.

8. Shi J. Combined removal experiment of NOx, SO2 and PM from marine diesel exhaust gas with SCR-DryEGCS system / J. Shi, Y. Zhu, J. Yang, Ch. Xia et al. // International Journal of Engine Research. — 2024. — Vol. 25, № 3. — P. 435 — 446.

9. Ivanchenko A.A., Konev G.A., Tyurgashkin V.G. Organizatsiya rabochego protsessa sovremennykh dvukhtoplivnykh sudovykh dizeley [Organization of the working process of modern dual-fuel marine diesel engines]. Sb. trudov NPK PPS GUMRF im. admirala S.O. Makarova [Proceedings of the Scientific and Practical Conference of the Admiral Makarov State University of Maritime and Inland Shipping]. 2022: 182-187. (In Russ.)

10. Bayraktar M. Investigation of alternative fuelled marine diesel engines and waste heat recovery system utilization on the oil tanker for upcoming regulations and carbon tax / M. Bayraktar // Ocean Engineering. — 2023. — Vol. 287. — P. 115831.

11. Bottero M. Systems Engineering for Naval Ship Design Evolution / M. Bottero, P. Gualeni // Journal of Marine Engineering. — 2024. — Vol. 12, № 2. — P. 210.

12. Ponte A. Machine Learning-accelerated computational fluid dynamics for naval ship resistance prediction / A. Ponte. — Universitat Politècnica de Catalunya, 2023.

13. Wang Z. Status and prospects in technical standards of hydrogen-powered ships for advancing maritime zero-carbon transformation / Zh. Wang, M. Li, F. Zhao, Y. Ji et al. // International Journal of Hydrogen Energy. — 2024. — Vol. 62. — P. 925 — 946.

14. Papanikolaou A. On parametric modelling, digital siblings and ship design optimization // Ship Technology Research. — 2024. — Vol. 71. — P. 92 — 101.

15. Ivanchenko A.A., Konev G.A., Larionov G.L. Podkhody k sovershenstvovaniyu sudovykh energeticheskikh ustanovok [Approaches to improving ship power plants]. Ekspluatatsiya morskogo transporta [Operation of maritime transport]. 2023. № 3(108): 121-138. (In Russ.)

16. De Marco C. Life cycle performance assessment of alternative marine fuels for Ro-Pax vessels / C. De Marco, S. Maggi, I. Poli // Energy. — 2021. — Vol. 237. — P. 121549.

17. Aravelli A. FMEA study on the reliability of a marine LNG fuel gas supply system / A. Aravelli, K. Permana, H. Shen // International Journal of Naval Architecture. — 2021. — Vol. 13. — P. 677 — 688.

18. Jin S. A new safety assessment model for the LNG-fueled vessel fuel supply system based on Fuzzy-TOPSIS and Bayesian network / S. Jin, J. Ahn, J. Kim // Journal of Marine Science and Engineering. — 2021. — Vol. 9 (8). — P. 891.

19. Teng W. / W. Teng, G. Wang, Y. Yang. Fault tree analysis of the fire and explosion accidents of fuel bunkering vessels // Journal of Marine Engineering & Technology. — 2021. — Vol. 20 (1). — P. 1-10.

20. MAN ES. Propulsion trends in tankers. URL: https://www.man-es.com/docs/default-source/marine/tools/propulsion-trends-in-tankers_5510-0031-03ppr.pdf (accessed 08.05.2024).

21. Elkafas A. Assessment of alternative marine fuels from environmental, technical, and economic perspectives onboard ultra large container ship / A. Elkafas, M. Rivarolo, A.F. Massardo // International Journal of Maritime Engineering. — 2022. — Vol. 164 (A2). — P. 125 — 134.

22. Zamboni G. Comparative analysis among different alternative fuels for ship propulsion in a well-to-wake perspective / G. Zamboni, F. Scamardella, P. Gualeni, E. Canepa // Heliyon. — 2024. — Vol 10 (4). — e26016.

23. Ryu B.R. Comparative analysis of the thermodynamic performances of solid oxide fuel cell — gas turbine integrated systems for marine vessels using ammonia and hydrogen as fuels / B.R. Ryu, P.A. Duong, H. Kang // International Journal of Ocean Engineering. — 2023. — Vol. 15. — P. 100524.

24. Xu J. Dynamic investigation of the influence of propeller on the vibro-acoustic characteristics of marine propulsion systems / J. Xu, L. Xue, D. Zou, Ch. Jiao et al. // Acta Mechanica Sinica. — 2024. — Vol. 40 (2). P. 523330.

25. Olsen A. Preparing the vessel for Arctic operations // A. Olsen. Ship operations in extreme low temperature environments. Springer, 2024. — P. 85 — 116.

26. Seyam S. Optimization and comparative evaluation of novel marine engines integrated with fuel cells using sustainable fuel choices / S. Seyam, I. Dincer, M. Agelin-Chaab // Energy. — 2024. — P. 131629.

27. Eze V.H.U. Advancements in energy efficiency technologies for thermal systems: A comprehensive review / V.H.U. Eze, J.S. Tamball, O. Favour Uzoma, N. I. Sarah et al. // INOSR Applied Sciences. — 2024. — Vol. 12 (1). — P. 1 — 20.

28. Vieira G.G.T.T. Methodology to evaluate the potential reduction of CO2 emissions in hybrid powered ships: tese (doutorado) / G.G.T.T. Vieira; Universidade de São Paulo. — São Paulo, 2023.

29. González R., Gómez X. Ammonia can be currently considered as one of the best green fuels for marine applications / R. González, X.Gómez // Sustainable Chemistry. — 2024. — Vol. 5(2). — P. 163 — 195.

30. Li J. Suppression of hydrofoil unsteady cavitation by periodic jets based on fish gill respiration / J. Li, H. Yan, F. Wang // Ocean Engineering. — 2024. — Vol. 293. — P. 116584.

31. Esmailian E. A new power prediction method using ship in-service data: a case study on a general cargo ship / E. Esmailian, Y.-R. Kim, S. Sverre, K. Koushan // Ship Technology Research. — 2023. — P. 1 — 22.

32. Alnes Ø. Battery-powered ships: A class society perspective / Ø. Alnes, S. Eriksen, B. Vartdal // IEEE Electrification Magazine. — 2017. — Vol. 5, № 3. — P. 10 — 23.

33. Teng W. Fault tree analysis of the fire and explosion accidents of fuel bunkering vessels / W. Teng, G. Wang, Y. Yang // Journal of Marine Engineering & Technology. — 2021. — Vol. 20, № 1. P. 1 — 10.

34. Kim H. Risk assessment of LNG fuel storage tanks for LNG fueled ships through failure modes and effect analysis / H. Kim, K. Kang, G. Kim // Energies. — 2020. — Vol. 13, № 23. — P. 6256.

35. Sahoo Z. Reliability-based design and optimization of marine power systems: A review / Z. Sahoo, R. Soman, K. Sha // Ocean Engineering. — 2021. — Vol. 216. — P. 108063.

36. Bolbot V. A comparative study of EEDI versus lifetime CO2 emissions of a Handymax bulk carrier / V. Bolbot, G. Theotokatos, R. Hamann // Ocean Engineering. — 2021. — Vol. 238. — P. 109657.


Review

For citations:


Ivanchenko A.A., Konev G.A. Experience in creating different types of power plants for Aframax class offshore vessels. Research Bulletin by Russian Maritime Register of Shipping. 2024;1(76):106-118. (In Russ.)

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-7097 (Print)