Development of the Register rules to the application of polymer composite materials for the construction of liquefied natural gas tanks
Abstract
Polymer composite materials (PCM) are widely accepted in general industry applications, civil construction and transportation of goods. One of the relatively new areas where PCM become accepted are the structures subjected to cryogenic temperatures. The examples of such structures are primarily as follows: tanks for liquid rocket fuel, structural elements of spacecraft, rockets and satellites. In relation to that, the promising area of PCM application would be the construction of ship tanks intended for the storage and transportation of liquefied natural gas tanks. To facilitate the application of such tanks on future gas tankers it is necessary to develop the specific Russian Maritime Register of Shipping rules that would cover the application of such materials. In order to do that it is necessary to perform the analysis of research papers that cover the practical application of PCM under cryogenic temperatures, and to perform laboratory tests. The paper gives the specifics of PCM characteristics behavior under cryo temperatures based on practical application and results of such tests. As a result, the most critical PCM characteristics are identified that should be covered in rule requirements. The structure of new rule requirements have been developed and presented in the paper.
About the Authors
V. V. PlatonovRussian Federation
PhD, head of laboratory
Saint Petersburg
N. N. Fedonyuk
Russian Federation
PhD, leading researcher
Saint Petersburg
M. S. Boyko
Russian Federation
PhD, head of department
Saint Petersburg
S. A. Sotskov
Russian Federation
principal specialist
Saint Petersburg
References
1. Pravila klassifikatsii i postroyki sudov dl’a perevozki szhizhennykh gazov nalivom. Chast' IV. Khranenie gruza. 2023. Rossiysky morskoy registr sudokhodstva. URL: https://lk.rs-class.org/regbook/getDocument2?type=rules3&d=D007A440-65B1-4CBE-B1C5-40FF92874B86&f=2-020101-176-4 (accessed 13.08.2024).
2. Resolution MSC.370(93). Amendments to the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code), 2014. URL: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MSCResolutions/MSC.370(93).pdf (accessed 13.08.2024).
3. The Application of Carbon Fiber Composites in Cryotank. Chapter 6. URL: https://www.intechopen.com/chapters/58970 (accessed 13.08.2024).
4. Fedonyuk N.N., Maslich E.A. Primenenie polimernykh kompozitsionnykh materialov v zarubezhnom sudostroenii [Application of polymer composite materials in foreign shipbuilding]. SPb.: Krylovsky gosudarstvenny nauchny tsentr, 2024.
5. BSE’s LNG Bunker Tanker to Utilise Composite Fuel Tanks. URL: https://www.manifoldtimes.com/news/bses-lng-bunker-tanker-to-utilisecomposite-fuel-tanks/ (accessed 13.08.2024).
6. Ceuster S.R. de. Composite Gas Carrier. Exploring the Technical and Financial Aspects Associated with the Production and Design of a
7. Composite Gas Carrier: thesis for the degree MSc in Marine Technology in the specialization Ship Design. SDPO.17.007.m. TU Delft, 2017. URL: http://resolver.tudelft.nl/uuid:5ba37b27-1b0f-4014-b8e2-00527a1d799d (accessed 13.08.2024).
8. Na forume «Arktika — Regiony» Rosatom predstavil proekt pervogo rossiyskogo gazovoza [Rosatom presented the design of the first Russian gas carrier at the ‘Arktika — Regiony’ forum]. URL: https://rosatom.ru/journalist/news/na-forume-arktika-regiony-rosatom-predstavil-proektpervogo-rossiyskogo-gazovoza/ (accessed 13.08.2024).
9. Choi I., Yu Y.H., Lee D.G. Cryogenic sandwich-type insulation board composed of E-glass/epoxy composite and polymeric foams. Composite Structures. — 2013. — Vol. 102. — Pp. 61 — 71.
10. Kutz P.W., Werner J., Otremba F. Testing of Composite Material for Transport Tanks for LNG. Key Engineering Materials. — 2019. — Vol. 809. — Pp. 625 — 629.
11. Ryzhkin A.E., Zadumov A.V., Fedonyuk N.N., Shaposhnikov V.M. RU 2526870, IPC B63B25/16, F17C3/02. Termoizolyatsionnaya germetichnaya stenka emkosti iz polimernykh kompozitsionnykh materialov dl’a szhizhennogo prirodnogo gaza [Thermo-insulating hermetic wall of the liquefied natural gas tank made of polymeric composite materials]. Russian Federation, assignee Publ. 27 Aug 2014.
12. Biryukova M.N., Blinov A.V., Zadumov A.V., Ryzhkin A.E., Soosaar D.Yu., Fedonyuk N.N., Shaposhnikov V.M. RU 2566588, IPC В63В25/16, F17C3/02, B32B37/00. Sposob izgotovleniya blokov termoizolyatsionnoy germetichnoy stenki emkosti novogo tipa iz polimernykh kompozitsionnykh materialov dl’a szhizhennogo prirodnogo gaza [Method of manufacturing of blocks of thermo-insulating hermetic wall of a new type of liquefied natural gas tank made of polymeric composite materials]. Russian Federation, assignee Publ. 27 Oct 2015.
13. Trofimov N.N., Kanovich M.Z., Kartashov E.M. et al. Fizika kompozitsionnykh materialov [Physics of composite materials]. Vol. 2. M.: Mir, 2005.
14. Zhang Y., Xu F., Zhang Ch., Wang J. et al. Tensile and interfacial properties of polyacrylonitrile-based carbon fiber after different cryogenic treated condition. Composites. Part B. Engineering. — 2016. — Vol. 99.— Pp. 358 — 365.
15. Perepelkin K.E. Armiruyushchie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymeric composites]. — SPb.: Nauchnye osnovy i tekhnologii, 2009.
16. Burov L.A. Primenenie polimernykh kompozitsionnykh materialov v kriogennom oborudovanii [Application of polymeric composites in cryogenic equipment]. M.: TsNITIKhIMNEFTEMASh, 1987.
17. Reed R.P., Madhukar M., Thaicharoenporn B. et al. Low-temperature mechanical properties of glass/epoxy laminates. Joint Conference of the Transactions of the Cryogenic Engineering. — 2014. — Vol. 1574. — Pp. 109 — 116.
18. Perez N.S., Shaw R.M., Gower M.R.L. Mechanical Testing of Fibre-reinforced Polymer Matrix Composites at Cryogenic Temperatures. National Physical Laboratory Report MAT 112, 2022.
19. Shi H., Lei Q., He X., Yang K., Sun B., Sun H. Effects of Cryogenic Temperature on Mechanical Properties of Carbon Fiber/Epoxy Composites. 18th European Conference on Composite Materials. — 2018. — Vol. 24. — P. 6.
20. Meng J., Wang Y., Yang H., Wang P. et al. Mechanical Properties and Internal Microdefects Evolution of Carbon Fiber Reinforced Polymer Composites: Cryogenic Temperature and Thermocycling Effects. Composite Science and Technology. — 2020. — Vol. 191. — P. 14.
21. Pravila klassifikatsii i postroyki morskikh sudov. Chast' XVI. Konstruktsiya i prochnost' sudov iz polimernykh kompozitsionnykh materialov, 2023 [Rules for the classification and construction of sea-going ships. Part XVI. Structure and strength of fiber-reinforced plastic ships]. Rossiysky morskoy registr sudokhodstva. URL: https://lk.rs-class.org/regbook/getDocument2?type=rules3&d=43A718B7-356C-4B37-8FCC-624DAADFEA70&f=2-020101-174-16 (accessed 13.08.2024).
22. Filin V. Yu., Il'in A.V., Larionov A.V., Nazarova E.D. Obosnovanie trebovaniy MAKO i Registra k vyboru materialov korpusnykh konstruktsiy, ekspluatiruemykh pri nizkikh klimaticheskikh temperaturakh. Chast' 1 — soprotivlenie startu treshchiny [Substantiation of IACS and RS requirements for the selection of hull materials for structures operated at low climatic temperatures. Part 1 — crack start resistance]. Nauchnotekhnichesky sbornik Rossiyskogo morskogo registra sudokhodstva. — 2023. — Vol. 72 — 73. — Pp. 48 — 58.
23. Boyko M. S. Rashchet teplovogo potoka v korpuse sudna-gazovoza na osnove analiticheskikh metodov teorii teploobmena [Calculation of heat flow in gas carrier structure based on analytical methods of heat exchange theory]. Nauchno-tekhnichesky sbornik Rossiyskogo morskogo registra sudokhodstva. — 2023. — Vol. 70 — 71. — Pp. 88 — 100.
Review
For citations:
Platonov V.V., Fedonyuk N.N., Boyko M.S., Sotskov S.A. Development of the Register rules to the application of polymer composite materials for the construction of liquefied natural gas tanks. Research Bulletin by Russian Maritime Register of Shipping. 2024;1(75):33-46. (In Russ.)