Preview

Research Bulletin by Russian Maritime Register of Shipping

Advanced search

Review of the evolution of ship design theory and discussion of the prospects of digital design solutions

EDN: PELJHW

Abstract

This article describes the evolution of the theory and practice of early ship design over the past 50 years, and analyzes the main Russian and foreign sources. The features of the analytical-, optimization- and system-based approaches to the formulation and solution of the design problem are consistently discussed, and the applied tools used in different approaches are described. A comparative analysis of these three approaches is carried out. Several assumptions are made about the ways for further development of the theory and practice of ship design using artificial intelligence and digital duplication technologies. The article also analyzes the reasons for some inertia of the ship design theory in modern Russia and a certain pause in the development of applied tools for conceptual ship design and analysis. A conclusion is made about the possibility for further development of ship design theory using modern information and software technologies.

About the Author

O. V. Tarovik
Bureau Hyperborea LLC
Russian Federation

PhD

191015, St. Petersburg, Kavalergardskaya ul., 6A, pom. 511



References

1. Pashin V.M. Eshche raz o roli i zadachakh teorii proektirovaniya sudov [Once again on the role and objectives of ship design theory]. Sudostroenie [Shipbuilding]. 2012. No. 2. P. 9 – 12.

2. Petrov A.S. K 2027 godu u sudostroitelei dolzhna poyavit'sya rossiiskaya SAPR [Shipbuilders should have a Russian CAD system by 2027]. Korabel.ru. 2023. No. 3. P. 112 – 121.

3. Gaikovich A.I. Osnovy teorii proektirovaniya slozhnykh tekhnicheskikh sistem [Fundamentals of the theory of design of complex technical systems]. St. Petersburg: NITs "Morintex", 2001. 432 p.

4. Ashik V.V. Proektirovanie sudov [Ship design]. Leningrad: Sudostroenie, 1985. 320 p.

5. Evans J.H. Basic design concepts. Journal of the American Society of Naval Engineers. 1959. Vol. 71, Issue 4. Р. 671 – 678. DOI 10.1111/j.1559-3584.1959.tb01836.x.

6. Kraev V.I., Stupin O.K., Limonov E.L. Ekonomicheskie obosnovaniya pri proektirovanii morskikh gruzovykh sudov [Economic evaluation in the design of seagoing cargo ships]. Leningrad: Sudostroenie, 1973. 296 p.

7. Nogid L.M. Teoriya proektirovaniya sudov [Ship design theory]. Leningrad: Sudpromgiz, 1955. 480 p.

8. Schneekluth H., Bertram V. Ship design for efficiency and economy. 2nd ed. Oxford; Boston: Butterworth-Heinemann, 1998. 240 p.

9. Watson D.G.M. Practical ship design. Vol. 1. Amsterdam; New York: Elsevier, 1998. 566 p.

10. Pashin V.M. Ship optimization. Leningrad: Sudostroenie, 1983. 296 p.

11. Everett J.L., Hax A.C., Lewinson V.A., Nudds D. Optimization of a fleet of large tankers and bulkers: A linear programming approach. Marine Technology SNAME. 1972. No. 9. Р. 430 – 438. DOI 10.5957/mt1.1972.9.4.430.

12. Kraev V.I. Ekonomicheskie obosnovaniya pri proektirovanii morskikh sudov [Economic evaluation in the design of sea-going ships]. Leningrad: Sudostroenie, 1981. 280 p.

13. Sokolov V.P. Postanovka zadach ekonomicheskogo obosnovaniya sudov [Objective-setting in economic evaluation of ships]. Leningrad: Sudostroenie, 1987. 164 p.

14. Gaikovich A.I. Primenenie sovremennykh matematicheskikh metodov v proektirovanii sudov [Application of modern mathematical methods in ship design: a study guide]. Leningrad: LKI, 1982. 89 p.

15. Christiansen M., Fagerholt K., Nygreen B., Ronen D. Chapter 4. Maritime transportation. Handbooks in Operations Research and Management Science / C. Barnhart, G. Laporte (eds.). Elsevier, 2007. Vol. 14. P. 189 – 284. DOI 10.1016/S0927-0507(06)14004-9.

16. Spravochnik po teorii korablya: v 3 t. / pod red. Ya.I. Voitkunskogo [Handbook in ship theory: in 3 vols. / Ya.I. Voitkunskii (ed.)]. Leningrad: Sudostroenie, 1985. 764 p.

17. Holtrop J. A statistical re-analysis of resistance and propulsion data. International shipbuilding progress. 1984. Vol. 31. P. 272 – 276.

18. Tsoi L.G. Formula dlya opredeleniya ledoprokhodimosti i rekomendatsii po vyboru formy obvodov korpusa ledokolov i transportnykh sudov ledovogo plavaniya [Formula for determining ice-breaking capability and recommendations for selecting the hull shape of icebreakers and ice transport vessels]. Perspektivnye tipy morskikh transportnykh sudov, ikh morekhodnye i ledovye kachestva [Prospective types of marine transport ships, their seaworthiness and ice performance: Transactions of the Central Research and Design Institute of the Marine Fleet]. Moscow: Transport, 1990. P. 141 – 144.

19. Bogdanov A.A. Sovremennye metody postroeniya i soglasovaniya teoreticheskogo chertezha korpusa sudna s pomoshch'yu EVM [Modern methods of setting off and fairing the lines drawing of a ship with the help of computers]. Sudostroenie za rubezhom [Foreign shipbuilding]. 1972. No. 8. P. 18 – 31.

20. Lackenby H. On the systematic geometrical variation of ship forms. Transactions of the Royal Institution of Naval Architects. 1950. Vol. 92. P. 289 – 315.

21. Kovalev V.A. Novye metody avtomatizatsii proektirovaniya sudovoi poverkhnosti [New methods of automation of ship surface design]. Leningrad: Sudostroenie, 1982. 212 p.

22. Piegl L., Tiller W. The NURBS Book. 2nd ed. New York: Springer-Verlag, 1997. 646 p. DOI 10.1007/978-3-642-59223-2.

23. Percival S., Hendrix D., Noblesse F. Hydrodynamic optimization of ship hull forms Applied Ocean Research. 2001. Vol. 23, No. 6. P. 337 – 355. DOI 10.1016/S0141-1187(02)00002-0.

24. Kondratenko A.A., Zhang M., Tavakoli S., Altarriba E. et al. Existing technologies and scientific advancements to decarbonize shipping by retrofitting. Renewable and Sustainable Energy Reviews. 2025. Vol. 212. P. 115430. DOI 10.1016/j.rser.2025.115430.

25. Weisfeld M. Ob"ektno-orientirovannoe myshlenie [Object-oriented thinking]. St. Petersburg: Piter, 2014. 304 p.

26. Vashedchenko A.N. Avtomatizirovannoe proektirovanie sudov [Computer-aided ship design: a study guide]. Leningrad: Sudostroenie, 1985. 164 p.

27. Gaspar H.M., Ross A.M., Rhodes D.H., Erikstad S.O. Handling complexity aspects in conceptual ship design. Proceedings of the 11th International Maritime Design Conference (IMDC-2012). Glasgow, UK, June 2012. 14 p.

28. Andrews D.A. A comprehensive methodology for the design of ships (and other complex systems). Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1998. Vol. 454, No. 1998. P. 187 – 211. DOI 10.1098/rspa.1998.0154.

29. Pashin V.M. Rol' nauki v organizatsii i stanovlenii rossiiskogo sudostroeniya na sovremennom etape [Role of science in organization and formation of Russian shipbuilding at the present stage]. Sudostroenie. 2007. No. 6 (775). P. 3 – 6.

30. Papanikolaou A., Harries S., Boulougouris E., Erikstad S.O. et al. Ship design in the era of digital transition. International Marine Design Conference (IMDC-2024). Amsterdam, Netherlands. June 2024. 40 p. DOI 10.59490/imdc.2024.784.

31. Volkov V.V., Meshkov S.A., Norov A.T. Kontseptsiya ob"ektno-orientirovannogo podkhoda k avtomatizatsii issledovatel'skogo proektirovaniya [The concept of object-oriented approach to automating researching design]. Programmnye produkty i sistemy [Software products and systems]. 1996. No. 1.

32. Kujala P., Bergström M., Hirdaris S. Goal-based ship design towards safe and sustainable shipping in ice-covered waters. Transportation Research Procedia. 2023.Vol. 72. P. 3956 – 3963. DOI 10.1016/j.trpro.2023.11.484.

33. Risk-based ship design. Methods, tools and applications / A. Papanikolaou (ed.). Springler, 2009. 379 p. DOI 10.1007/978-3-540-89042-3.

34. Egorov G.V. Proektirovanie sudov ogranichennykh raionov plavaniya na osnovanii teorii riska [Design of restricted area ships based on risk theory]. St. Petersburg: Sudostroenie, 2007. 384 p.

35. Choi M., Erikstad S.O., Ehlers S. Mission based ship design under uncertain Arctic Sea ice conditions. Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE-2015). St. John’s, Newfoundland, Canada. May 31 – June 5, 2015. DOI 10.1115/OMAE2015-41743.

36. Brett P.O., Boulougouris E., Horgen R., Konovessis D. et al. A methodology for logistics-based ship design. Proceedings of 9th International Marine Design Conference (IMDC-2006). Ann Arbor, Michigan, USA, 16 – 19 May 2006.

37. Gkochari C.C., Papanikolaou A. Optimization of ship design within an integrated multimodal transport system. Journal of Ship Production and Design. 2010. Vol. 26, No. 1. P. 47 – 59. DOI 10.5957/jspd.2010.26.1.47.

38. Tarovik O.V., Topaj A.G., Krestyantsev A.B., Kondratenko A.A. Arctic marine transport system simulation: Multidisciplinary approach fundamentals and practical experience. Arktika: Ekologia i Ekonomika [Arctic: Ecology and Economy]. 2017. No. 1 (25). P. 86 – 101. (In Russ.)

39. Tarovik O.V., Topaj A.G., Krestyantsev A.B., Kondratenko A.A. et al. Kompleksnaya imitatsionnaya model' morskoi transportnotekhnologicheskoi sistemy platformy «Prirazlomnaya» [Integrated simulation model of the offshore transportation and technological system of the Prirazlomnaya platform]. Arktika: Ekologia i Ekonomika [Arctic: Ecology and Economy]. 2017. No. 3. P. 86 – 103.

40. Buyanov A.S., Tarovik O.V., Krest'yantsev A.B., Topazh A.G. et al. Modelirovanie sistemy transportno-logisticheskogo obespecheniya mestorozhdenii Obskoi i Tazovskoi gub [Modeling of the system of transport and logistics support for the Ob and Taz Bay fields]. NEFTEGAZ.RU. 2022. No. 2 (122). P. 70 – 78.

41. Bergström, M., Erikstad, S.O., Ehlers, S. Assessment of the applicability of goal- and risk-based design on Arctic sea transport systems. Ocean Engineering. 2016. Vol. 128. P. 183 – 198. DOI 10.1016/j.oceaneng.2016.10.040.

42. Erikstad S.O., Levander K. System based design of offshore support vessels. Proceedings of the 11th International Marine Design Conference (IMDC-2012). Glasgow, UK, June 2012. 14 p.

43. Kondratenko A.A., Tarovik O.V. Proektirovanie arkticheskikh sudov snabzheniya s uchetom struktury gruzopotoka transportnoi sistemy [Design of Arctic supply vessels with respect to the cargo flow structure of the transportation system]. Arktika: Ekologia i Ekonomika [Arctic: Ecology and Economy]. 2019. No. 2 (34). P. 80 – 96. DOI 10.25283/2223-4594-2019-2-80-96.

44. Nykiel D., Zmuda A., Abramowski T. A sustainability-driven approach to early-stage offshore vessel design: A case study on wind farm installation vessels. Sustainability. Vol. 17, Issue 6. P. 2752. DOI 10.3390/su17062752.

45. Solheim A.V., Groven B.R., Røsbjørgen J.M., Wigdahl A. et al. System-based ship design of a deep-sea mining vessel. Ship Technology Research. 2024. 15 p. DOI 10.1080/09377255.2024.2396197.

46. Bole M., Forrest C. Early stage integrated parametric ship design. Proceedings of 2nd International Conference on Computer Applications in Shipbuilding (ICCAS). 2005. P. 447 – 460.

47. Pawling R.G., Percival V., Andrews D.J. A study into the validity of the ship design spiral in early stage ship design. Journal of Ship Production and Design. 2017. Vol. 33, Issue 2. P. 81 – 100. DOI 10.5957/JSPD.33.2.160008.

48. Tsakalakis N., Vassalos D., Puisa R. Goal-based ship subdivision and layout. Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles (STAB-2009). St. Petersburg, June 2009. P. 687 – 696.

49. Papanikolaou A., Hamann R., Lee B. S., Mains C. et al. GOALDS – Goal Based Damage Ship Stability and Safety Standards. Accident Analysis and Prevention. 2013. Vol. 60. P. 353 – 365. DOI 10.1016/j.aap.2013.04.006.

50. Peschmann J., Selle H., Jankowski J.R., Horn G.E. et al. IACS common structural rules as an element of IMO goal based standards for bulk carriers and oil tankers. Progress in the Analysis and Design of Marine Structures. London: CRC Press, 2017. DOI 10.1201/9781315157368-39.

51. Resolution MSC.287(87) – Adoption of the international goal-based ship construction standards for bulk carriers and oil tankers / IMO. 2010. URL: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MSCResolutions/MSC.287(87).pdf (accessed 29.05.2025).

52. Papanikolaou A.D. Holistic Approach to Ship Design. Journal of Marine Science and Engineering. 2022. Vol. 10, Issue 11. P. 1717. DOI 10.3390/jmse10111717.

53. Papanikolaou A. Ship Design. Methodologies of preliminary design. Springer Verlag, 2014. 628 p. DOI 10.1007/978-94-017-8751-2.

54. Wang Z., Yang X.Q., Zheng Yu.H., Chen W.C. et al. Interactive ship cabin layout optimization. Ocean Engineering. 2023. Vol. 270. P. 113647. DOI 10.1016/j.oceaneng.2023.113647.

55. Latent space. URL: https://www.latent.space/p/2025-papers (accessed 14.02.2025).

56. Khan S., Goucher-Lambert K., Kostas K., Kaklis P. ShipHullGAN: a generic parametric modeller for ship hull design using deep convolutional generative model. Computer Methods in Applied Mechanics and Engineering. 2023. Vol. 411. P. 116051. DOI 10.1016/j.cma.2023.116051.

57. Ao Y., Li Y., Gong J., Li S. Artificial Intelligence design for ship structures: A variant multiple-input neural network-based ship resistance prediction. ASME. Journal of Mechanical Design. September 2022. Vol. 144, Issue 9. P. 091707. DOI 10.1115/1.4053816.

58. Furtado L.S., Soares J.B., Furtado V. A task-oriented framework for generative AI in design. Journal of Creativity. 2024. Vol. 34, Issue 2. DOI 10.1016/j.yjoc.2024.100086.

59. Onatayo D., Onososen A., Oyediran A.O., Oyediran H. et al. Generative AI applications in architecture, engineering, and construction: Trends, implications for practice, education & imperatives for upskilling – A review. Architecture. 2024. Vol. 4, Issue 4. P. 877 – 902. DOI 10.3390/architecture4040046.

60. Requejo W.S., Martínez F.F., Vega C.A., Martínez R.Z. et al. Fostering creativity in engineering design through constructive dialogues with generative artificial intelligence. Cell Reports Physical Science. 2024. Vol. 5, Issue 9. DOI 10.1016/j.xcrp.2024.102157.

61. Kana A.A., Li W., van Noesel I., Pang Y. et al. Application of digital twins in the design of new green transport vessels. State-of-the-Art Digital Twin Applications for Shipping Sector Decarbonization / B. Karakostas, T. Katsoulakos (eds.). IGI Global Scientific Publishing, 2024. P. 161 – 191. DOI 10.4018/978-1-6684-9848-4.ch008.

62. Mauro F., Kana A.A. Digital twin for ship life-cycle: A critical systematic review. Ocean Engineering. 2023. Vol. 269. P. 113479. DOI 10.1016/j.oceaneng.2022.113479.

63. Michalski J.P. Parametric method of preliminary prediction of the ship building costs. Polish Maritime Research. 2004. Special issue. P. 16 – 19.

64. Gaikovich A.I. Ship design theory and its teaching. Transactions of the Krylov State Research Centre. 2020. Special edition 1. P. 137 – 141. DOI 10.24937/2542-2324-2020-1-S-I-137-141.


Review

For citations:


Tarovik O.V. Review of the evolution of ship design theory and discussion of the prospects of digital design solutions. Research Bulletin by Russian Maritime Register of Shipping. 2025;(79):124-136. (In Russ.) EDN: PELJHW

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-7097 (Print)